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ALMOST AUTOMORPHIC SYMBOLIC MINIMAL 
SETS WITHOUT UNIQUE ERGODICITY 

BY 

NELSON G. MARKLEY AND MICHAEL E. PAUL 

ABSTRACT 

Given a metrizable monothetic group G with generator g and a suitable closed 
nowhere dense subset C of positive Haar measure, we associate a natural 
compact metric space whose points are almost automorphic symbolic minimal 
sets. It is then shown that those minimal sets which have positive topological 
entropy and fail to be uniquely ergodic form a residual set. The example due to 
P. Julius [2] of a Toeplitz sequence of positive entropy which is uniquely ergodic 
shows that the "residual" conclusion is sharp. 

Around 1972 a number of people conjectured that a compact metric almost 

automorphic minimal set was uniquely ergodic only if the image of the almost 

automorphic points in its maximal equicontinuous factor had full measure with 

respect to the unique invariant probability measure on the latter. Since the 

converse is trivial, a proof of this conjecture would have provided a simple 

characterization of unique ergodicity in this setting. However,  recently P. Julius 

[2] has given an example of a Toeplitz sequence whose orbit closure is uniquely 

ergodic and has positive entropy, Consequently this conjecture is false. The 

purpose of this paper is to show that in some settings including Toeplitz 

sequences it is usually true. Specifically there are natural compact metric spaces 

of almost automorphic symbolic minimal sets whose almost automorphic points 

do not have full measure in the above sense, and our results give conditions for 

the existence of a residual collection of these minimal sets which are not 

uniquely ergodic. 

In his seminal paper on disjointness Furstenberg [1] gave an example of a 

minimal symbolic flow with positive entropy which was not uniquely ergodic. 

Various people recognized that this example was almost automorphic, in fact 

Toeplitz. The main idea in the construction of this example is to get an arbitrary 

sequence of symbols to appear in order but not consecutively in a block whose 
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length can be controlled. We make use of this idea from the viewp0]nt of 

separating covers or characteristic sequences developed by the authors [4 and 5]. 

1. Introduction 

Let (X, ~0) be a minimal (discrete) flow on a compact metric space. There exists 

a maximal equicontinuous factor of (X, ~0). Since the group acting on X is the 

integers, this maximal equicontinuous factor can be represented as a monothetic 

group G with translation by a generator g and will be denoted by (G, g). Let p 

be a homomorphism of (X,~0) onto (G,g). A point x ~ X  is an almost 

automorphic point if p-l(p(x)) = {x}. If (X, ~p) is almost automorphic, that is, X 

contains an almost automorphic point, then p(x) = p (y )  if and only if x and y 

are proximal. 

A Borel probability measure/z on X is invariant if/z (~p-I(A)) =/z  (A) for all 

Borel sets A. At least one such measure always exist; when only one exists (X, ~,) 

is said to be uniquely ergodic. In general the ergodic measures are the extreme 

points of the convex compact set of invariant measures. For every ergodic 

measure /z  on X there exists an x E X such that 

fx fdu = ~ f(~k(x)) 
k=O 

for all continuous real valued functions. If this limit exists for all x in X and all 

continuous f, then (X, ~p) is uniquely ergodic and for each continuous f the 
convergence is uniform in x. 

The full shift on m-symbols will be denoted by (l)m, or). If x E l)m, then x( j )  

will denote the j- th coordinate of x. We will also need the space l '~  consisting of 

all sequences on m-symbols indexed by the positive integers. As usual the 
symbols will be {0,. �9 m - 1}. 

Let (M, or) be a minimal subset of (~m, or). An / -b lock  B = b l . . .  b~ appears in 

M if there exists x E M and r such that x(r+ 1 ) . . . x ( r +  l ) =  b~ . . .  bz. The 

(topological) entropy of (M, or) is given by 

1 log I{B : B is an N-block appearing in M}I. h(M)= 12m 

(Here [ I denotes cardinality.) 

2. Separating covers 

Let G be a compact metrizable monothetic group with generator g. Following 
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[5] we define a separating cover of (G,g) to be an ordered finite cover 

a = {Do,"  ", D,,-1} of G satisfying: 

(a) cl(int(Di))= D~ for all i, 

(b) int(D, A D j ) =  O for all i~ j ,  

(c) if z and w are distinct elements, then there exist integers n, i,j with i ~  j 

such that z +ng ~ int D, and w + ng E int Dj. 

It is easy to check that condition (c) is equivalent to: 

(c') Di + z = D~ for i = 0 , - - . ,  m - 1 implies z = 0. 

Let (M, tr) be an almost automorphic minimal subset of (fl,,, tr) and let 

p: (M, o ' ) ~  (G, g) be a homomorphism onto its maximal equicontinuous factor. 

Note G is metric in this case. Set D~ = p({x E M: x(0) = i}) for i = 0 , . . . ,  m - 1. 

Then a = {Do,"  ", D,,-1} is a separating cover of (G, g). Letting Oa = U,aD~ = 

Ui,,jD~ n Dj and U = G\cga we have A = n 7._~.u + ng is residual and x E M 

is almost automorphic if and only if p (x) E A. Moreover,  when p (x) = z ~ A, 

m--1  

(1)  x ( , , )  -- ix,,,(z + ,,g). 

(Throughout Xw will denote  the characteristic function of the set W.) Con- 

versely, if a = {Do,"  ", D,,-I} is a separating cover of (G, g), then (1) can be used 

to construct an almost automorphic minimal set (M(a), tr) in (l'l,,, tr) which is 

independent of z and a homomorphism p: (M(a), o ' )~  (G, g) such that D~ = 

p({x E M ( a ) :  x(0) = i}) and p(x) = p (y )  if and only if x and y are proximal. In 

particular, (G, g) is the maximal equicontinuous factor of (M(a) ,  tr). If (c) does 

not hold, then (1) still defines an almost automorphic minimal set in (IL,, tr) but 

the maximal equicontinuous factor need not be (G, g). (For additional informa- 

tion about this point of view the reader is referred to [4] and [5].) 

REMARK 1. Let a = {Do,'-  ", D,,_I} be an ordered finite cover of G satisfying 

conditions (a) and (b). If Oa + z = ,ga implies z = 0, then a is a separating cover. 

PROOF. I f D ~ + z = D ~  for i = 0 , . . . , m - l ,  then 0 a + z = 0 a .  

Let )t denote  Haar  measure on G and note that )t (A)  is either 1 or 0. When 

A (A)  = 1, (M(a), o') is uniquely ergodic. If )t (A)  = 0, then )t (,ga) > 0 and U is 

endowed with some structural complexity. In particular, there may be many 

separating covers with the same boundary. We will show that in many cases 

there is a residual subset of such covers for which (M(a), tr) is not uniquely 

ergodic. 

The general setting for the remainder of the paper is specified by the 

following: 
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Standing Hypothesis 

(1) C is a closed nowhere dense subset of a compact metric monothetic group 

G, and g is a generator of G. 

(2) There is a fixed sequence {U~}T=I of disjoint open sets of G satisfying: 

(i) G \ C  = U ? . ,  U,, 
(ii) given a neighborhood V of z an element of C, V A U~ ~ O for infinitely 

many i's. 

Given ~0 ~ f~+ set 

D, = cl[ I,.J {Uj: ~o(j) = i}] 

and observe that (a) and (b) hold. Thus each (o gives rise to an almost 

automorphic symbolic minimal set which will be denoted by M((o). By assuming 

C + z = C implies z = 0 we can conclude that ot = {Do," �9 ", Di} is a separating 

cover of (G, g) provided dot = C. In general dot need not coincide with C, but we 

do have the following: 

LEMMA 2. I f  C + z = C implies z = O, then there exists a residual set Ro in ~+ 

such that 

(i) C = dot, 

(ii) ot is a separating cover, 

(iii) (G, g) is the maximal  equicontinuous factor of (M(a)), o'), 

(iv) if to E Ro, ~o'E ~+, and a)(n) = oJ'(n) for all n >= N, then to' ~ Ro. 

PaOOF. By the preceding remarks it suffices to prove (i) and (iv). Let z E C 

and let d( , ) denote a metric for G. Then zf~ dot if and only if there exist 

k > 0 and j, 0 =< j =< m - 1 such that to (i) = j for all i with d(U~, z)  < 1/k. Let 

P(z, j, k)= j vi k d(U,, z)< 1) 

and let 

, ' =  O O 
n - 1  j - O  k - 1  

where {z,}7-1 is a countable dense subset of C. Since there are infinitely many i 's 

such that d ( U ~ , z ) < l / k  for z ~ C ,  P ( z , j , k )  is closed and nowhere dense. 

Finally R0 = f l2 \P  is the desired set. 
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3. B a s i c  p r i n c i p l e s  

Continuing with the same notation and assumptions select and fix z0E G. 

Define a sequence {c.}7=1 inductively by first letting c1= 1 and n~ satisfy 

Zo + g E U.,, and then - -  assuming cl, �9 �9 ", ck and nl, �9 �9 ", nk are defined - -  letting 

ck+, = min{ j :  zo+ jgf  ~ ,=,0 U.,} 

and nk+l satisfy Zo+ ck+,g E U.~.,. Thus c. is the minimal number  of steps 

required for Zo+ kg, k _-> 1 to hit precisely n distinct U,'s. Note  {c.}~,  is an 

increasing sequence and i ~ n~ is a permutat ion of the positive integers. By 

reindexing we can assume that z 0 + c . g ~ U ,  and for l_ - - -k<c . ,  

Zo + kg E U 7-~ U~. 

THEOREM 3. I f  lim~_.~ c, /n  = 8 < oo and m > 2 p where p = [8] + 1, then there 

exists a residual set R in 1"~ such that for all to E R, M(to)  is not uniquely ergodic 

and h (M(to)) > ( l /p )  In (m/2 p) > 0. 

PROOF. Let l => 2 and define 

Q, = {r: c,+, - c,+, < lp}. 

The first step in the proof  is to show that 0 ,  is infinite. Assume I Q, I = K < oo and 

consider N such that cN =< 8N + 1. We can write N = sl + t with 0 -< t < / .  Then 

( s  - K ) l p  _-< (c ,  - c , )  + (c2,  - c ,+ , )  + . . .  + (c , ,  - c ~ , _ , , + , )  

s - 1  

_-<5'. (~,, - c , , + , ) -  c~ + r _-< c~ 
j = l  

<= 8(sl + t )+ 1 

and dividing by ( s -  K ) l  gives 

< 8 s  + 8t 1 
P = s - K  (s - -K~l  + -  (s K ) l  ( s -  K ) l "  

Since we can let N go to infinity with cN = 8N + 1, we get the contradiction p =< 

because s would also go to infinity. 

Let B be any I block on m-symbols  and set 

Q ( B )  = {to E fl~: to(r + 1 ) . . .  to(r + l) ~ B V r  E Q1}. 

It follows that each Q ( B )  is closed and nowwhere dense in II~. Now let 
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*--"-,Iv ~ 
It remains to show that for any to E R, M(to) has positive entropy and is not 

uniquely ergodic. To do this we will make use of the point xo(n)-- 

ZT~lixo,(Zo+ ng) in M(to). 
Let B = b l . .  �9 bt be any/ -b lock  in m symbols. There exists r E Q, such that 

to(r + 1 ) . . .  to(r + l) = B because w E R. Since c,+, < C,+l + lp and x(c.)  = to(n) 
for all n, the symbols b~,. . . ,  bt appear in order but not necessarily consecutively 

in x(c,+l) ' . ,  x(c.+l + lp - 1). But a , l -block can produce at most (~'9/-blocks in 

this way. Therefore 

mt<=(Plll)[{A: a i sa  

Because (ft)__ 2.z the above implies 

( m l 2 " ) ' < - I { A : A  i sa  

and consequently 

pl-block in M(to)} I. 

pl-block in M(to)} I 

0 < log (m/2") __< h (M(to)). 
P 

If M(to) were uniquely ergodic, then each symbol j would have a frequency ~,j 

and XT'=~ 1Y, = 1. Using the previous argument we can find a pl-block A in x 

containing at least l j 's. Thus ~h--> l ip and the contradiction 1_- > mlp  > 1  

completes the proof. 

Since M(to) is uniquely ergodic if to E Ro and m ( C ) = 0  and since 

R O Ro # 0 ,  lim c , /n  < 8 implies m (C) > 0. 

Furstenberg's example [1] of a minimal set with positive entropy which is not 

uniquely ergodic is the prototype of the previous theorem. The next two 

theorems are variations on the same theme which produce the same results 

without the restriction on the number of symbols. 

THEOREM 4. I f l i m c , / n  = 8 <0% A(0U~)= 0 foral l  i, and m =2 ,  then there 
exists a residual set R in ~ +,, such that M (to ) is not uniquely ergodic for all to E R. 

PROOF. First take m -- 2" + 1 and apply the previous theorem to obtain an 03 

such that M(03) is not uniquely ergodic. Let V~ = {~ ~ M(03): ~(0)= i} and 

suppose that 

lim 1 N-~ x , , ,  = 
k - O  
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exists for all 2 E M ( ~ )  and 0 _-< i =< m - 1. Then each y~ is invariant and has a 

residual set of points of continuity because it is a pointwise limit of continuous 

real valued functions on a Baire space. By minimality each 7,(2) is a constant y~. 

Thus for every ergodic measure/x we have/~ (V~) = 7~ which in turn implies the 

same thing for all invariant measures. From the choice of o3 we know that for 

each i there exists an invariant measure such that/x (V~) _-> 1/p where p = [6] + 1. 

E~=0 7~ >- m/p > 1. Therefore,  there Now we again have the contradiction 1 = " - '  

exists .~ E M ( d  0 and i such that 

lira 1 ~-~ ,,-.o E x,., (2,)) 
k=0 

does not exist. Without loss of generality we can assume i = 1. 

The next step is to show that we can assume 2~ is almost automorphic. Define 

f~ and gr  on M(t~) by 

1 N-1  

X 
k=O 

and 

gK(;) = sup [f , , (~)-f , , , (2)[ .  
N,N'~_K 

Set V(K, n) = {2: g x ( 2 ) <  1/n} and choose n '  so that 

lim fN (21) - lira fN(2~) > 3/n'. 

Suppose int(cl V(K, n')) = W J  0 .  Then there exists r/ such that 2z = o-" (~1) E 

W. Choose N > N '  > K so that/N(~2) - [N,(~2) > 1/n', and choose ~ E V(K, n') 
so that ~(.j)= 22(j) for 0 _-<j-< N. Then we have the contradiction 

1/n '> gr(2) >- fN(Yc) - f~,(:~) = fN(~z) - fN,(:~2) > 1/n'. 

It follows that M(t~)\ I,.J ~=lcl V(K, n') is a residual subset of M(o3) and hence 

contains an almost automorphic point. Since lim~--,| exists if and only if 

E I") "~=~ I,.,} ~=~ V(K, n), we can assume that 2~ is almost automorphic. 

Let z~ = p(2~) and reindex {U,}: .I  using z~ instead of z0. (We will not be using 

the hypothesis that l imc, /n  = 6 <oo again.) This yields a new a31 such that 

M(o31) = M(t~). Consider the block map 0, 2 , . . . ,  m - 1 ----> 0 and 1 ---* 1. It defines 

a map of l ~  onto 12~ and a homomorphism ~ : M(~)---* Il2. Let to~ be the image 

of a31 and x~ the image of ~x. It is obvious that the image of M(o3~) is M(tol), 
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does not exist, and 

lim 1 N-1 N-| -N ~ Xl(k ) 
k=O 

xl(n)  = Xo,(z~ + ng) 

where D1 = cl[ I,.J {U,: tol(j) = 1}]. Let f :  n~ ~ f12 by 

f ( t o ) (n )  = XD,(Zl + n g )  

where D,  = cl[ l..J {Uj: to(j) = 1}]. So f(tol) = xl. Set 

1 N - 1  

fn(to)=-lV ~ f ( t o ) ( k )  and gr(to) = sup IfN(to)-fN'(to)l. 
k =0 N , N ' ~ K  

Suppose to2(i)=tol(i)  for all i except i '  and to2(i')~tol(i'). Let y ( k ) =  

Xtu kg). Because A(~gU~)=0, limn_~(1/N)Y?dS_dy(k)exists. Since f(to2) = 

f(tol) + Y or f(to2) + y = f(tol), 

lim fN (to2) - lira fN (to2) = lim fN (to1) - lira fN (to,) > 0. 

Using this ability to change a finite number of coordinates of to1 instead of 

minimality, we can repeat the earlier argument to show that V(K,  n ' ) =  

{ to :g~(os )<l /n ' }  is nowhere dense for a suitable n'. Therefore,  R =  

fl~\ U ~ , c l  V(K,  n') is a residual set such that l imN~fn(to) does not exist for all 

to E R. In particular, M(to) is not uniquely ergodic when to E R. This proves the 

theorem for m = 2, which implies the result for 2 < m < 2 p + 1. 

THEOREM 5. I[ lim cn/n = 8 < oo and m = 2, then there exists a residual set R 

in f ~  such that for all to ~ R, h(M(to) )  >- _ (1/p)log m where p = [3] + t.  

PROOF. 

by 

There exists r/ 

and let 

With Q~ as in the proof of Theorem 3 define F~: Qa---~{1,...,pl} H 

F,(r) = (c,+2- c , .1 ,"  ", c,+, - c , . - O .  

such that O~ = F71(r/) is infinite. For an /-block B let 

O ' ( B ) = { t o :  to ( r+  1 ) . ' . t o ( r +  l ) ~ B V r ~  Q~} 

R = n ; \  U O ' (B) .  
B 
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Consider l and let ~j = E~-~*/i where ~7 = (r/ , , . .  ",17H). For each /-block 

B = b~.. �9 b~ there exists a pl-block A in x containing the symbols of B in order 

but not consecutively as before, but, in addition, a~ = b~, a1§ = b2, " �9 ", a~+~, = bz. 

Therefore, 

and 

m ' < = I { A : A  i sa  pl-blockin M(to)} I 

log m E h ( M ( t o ) ) .  
P 

A variety of corollaries can be obtained by intersecting the residual sets in 

Lemma 2 and Theorems 3, 4, and 5. Implicit in these results is the topologizing of 

a certain class of minimal sets. A priori this topology depends upon Zo, but it can 

be easily shown that this does not happen. Hence the residual sets in these 

results are of some intrinsic interest. It is also true that these residual sets have 

full measure with respect to the fair Bernoulli measure on fl~. The remainder of 

the paper is devoted to showing that these theorems are broadly applicable. In 

particular, they apply to Cantor sets of positive Lebesgue measure on the circle. 

4. Applications 

4.1. p -  adic  In tegers  

A necessary and sufficient condition for a symbolic minimal flow to be the 

orbit-closure of a Toeplitz bisequence is that the flow be almost automorphic 

with a totally disconnected compact metric monothetic group as maximal 

equicontinuous factor. To see how the preceding results apply in this setting, let 

Gp denote the p-adic integers, with generator 1. Now let {n,} be any increasing 

sequence of positive integers (if p = 2, we require that n~ => 2) and consider the 

closed and open subgroups {H,J, where 

H,, = c l { /p" , : /=0 ,  - 1 ,  _ 2 , . . . } .  

Define {U,} by U1 = 1 + H,, and in general U, = m + H.~, where m = inf{l > 

0:/li~ U~'.7~Uj} and n k = i n f { n , : [ m + H ~ l n [ U , 2 ~ U j ] = O  and n , > n s ,  

where U,-1 = t + H,,}. Let C = Gp\ 1,3 7-1 U,. Then C is a closed set with empty 

interior, each U, has empty boundary, and the Haar measure of C is greater 

than or equal to 

n-- I  p - -  
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(if p =2 ,  we have required C to have measure greater than or equal to 

1-X~=22-" = �89 Suppose now that there exists a z #  0 such that C + z = C. 

Then C + H =  C, where H is the subgroup defined by H=cl{ l z :  l= 
0, ---1, ---2,...}. Each nontrivial closed subgroup of Gp is also open, and thus 

C + H = C implies that C is open, a contradiction. Finally, note that if x ~ C 

and V is a neighborhood of x, then V n U,~ O for infinitely many i's, as the 

boundary of each U, is empty. Letting Zo = 0, the only condition which needs to 

be checked in order to apply the general theorems from Section 3 is the 

condition that lim c,/n < oo. To see this, let a positive integer n be fixed. Then 

since Uj is a coset of a subgroup with index A(Uj) -~, h = Haar measure, 

" - '  ( u , ) )  
c .  = < + , .  

The n on the right hand side of the inequality accounts for the starting points 

{q, c2 ,"  ", c,}. Thus 

c ,A(C)<n and limc,/n<=A(C)-l<oo. 

The preceding construction started with Gp and produced symbolic minimal 

flows which are orbit-closures of Toeplitz bisequences. The connection between 

this viewpoint, Furstenberg's example [1], and the usual arithmetic progression 

definition of Toeplitz sequences is given by the following theorem. This theorem 

asserts that "non-regular Toeplitz sequences usually have positive entropy and 

are usually not uniquely ergodic." We suppose that Z += U ~=IP,, where 

P. = {c, + ld, : l = 0, 1, 2 , . . . }  and cl < c2 < "  ". For to ~ fl  +, let T(to) E I I  + be 

defined by T(to), = to,, where i E P,. 

THEOREM 6. Suppose that the arithmetic progressions P, have lengths d. 
+ satisfying E 1/d, = e < 1. Then for all m = 2, there exists a residual set R C_ tim 

such that for each to E R, the orbit-closure of T(o~ ) has positive topological entropy 
and is not uniquely ergodic. 

PROOF. The theorems of Section 3 apply here if one can show that li_._~m c./n < 
oo. To see this, argue exactly as in the preceding construction. Let n be fixed. 

Then 

(~,-1 1/dj) c .  = < c .  + n, 

and thus limc, ln <= ( 1 -  e) -1. 
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(1) 

(2) 

(3) 

(4) 

Thus 

then 

N1/2 <= n,, c,,, <= N~, 

Now find N2 > N~ such that 

4.2. Tori 

Let G be an/-dimensional  torus (l = ~to) with generator g. Define a collection 
of open disks {U.} by first letting U~ be an open /-disk containing g, {ng}7=_| O 
,9(U1) = 0 ,  and such that A(U1)<].  Since A(,gU~)= 0, it follows that for all 

sufficiently large N, 

card ([1, N] n {j: jg E U1}) < N/2. 

Let N1 be such an N, and then define pairwise disjoint open disks U~, 

2 =< i ~ 1 + (N1 - card ([1, N] n {j: jg ~ U~}) so that: 

U~ n U I = Q ,  

h (U,) < 1/3', 

ng ~ ,9 (U~) for all n, 

card ([1, N~] n{j :  jg E U~})= 1. 

if nl = 1 + (N1 - card ([1, N1] n {j: jg E U1})) and c,, = min {j: jg E U,,}, 

and so c,,/n~<- 2. 

card (,, n (,: ,..,,}) 

Define pairwise disjoint open disks Ui, 

n~<i<= n l +  ( N 2 - c a r d ( [ l ,  N2]n{ j :  j g E  ,=,0 Us})) 

so that 

(1) u ,n  u s = o ,  s<-n,, 
(2) A(U, )<  1/3', 
(3) ng ~ ,9 (Ui) for all n, 

(4) card([1, N2] n{j :  jg E Ui})= 1. 

Then if n2 = n~ + N2 - card ([1, Nz] O{j: jg ~ U 7'-- I U, ), 

N2/2 =< n2, c,~ =< N2, and so c,Jn2 <= 2. 

Continue this process, defining {U.}7=1. Without loss of generality we may 

assume that no two of the disks have the same radius, and that the disks have 
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pairwise disjoint closures. Let z0 = 0 and C = G \  U /3,. Then C is a closed set 

with empty interior, A ( a U , ) = 0 ,  and lirnc,/n<=2. We need to check two 

conditions in order to apply the general theorems from Section 3: 

(a)  C + z = C i m p l i e s z = 0 ,  

(/3) if x E C and V is a neighborhood of x, then v n  U ~ t O  for infinitely 

many i's. 

The geometry of the torus implies both conditions. If z g 0 and C + z = C, then 

there is an index set I with cardinality at least two such that 

UI= U (Ui'~-Z)" 
i E l  

Since U I Q U , = O ,  it follows that ( U i + z ) N ( U s + z ) = O ,  and thus U , =  

U~Er (U~ + z)  violates the connectedness of U,. To check condition (/3) note that 

the only possibly troublesome points x E C are those which occur in the 

boundary of some U~. Since the U. were chosen to have pairwise disjoint 

closures, we assume that x EaU~ and x ~ c l ( U i ~ U s ) .  This implies that 

in t (c lU~)\U~gO. To avoid this, we now impose another condition on the 

construction of the Un; namely that each U. satisfies int(cl U.)\U. = 0 .  One 

can always find such U. on a torus, and therefore condition (/3) must hold for 

such U,. 

4.3. The Circle 

The examples constructed on p-adics and tori were fairly specific - -  one had 

to be careful in particular to guarantee that lira c./n < ~. The situation is much 

more general on the circle G = R/Z with irrational rotation 3'. Let C be any 

Cantor set in G, and write C = G \  U ~=1 U,, where the U. are the complemen- 

tary intervals of C. Even though there may exist a finite set of z ~ 0 such that 

C + z = C, it can be shown that there is a residual set of 2-symbol oJ such that 

(M(to), tr) has (G, 3') as maximal equicontinuous factor and C = 03'. The only 

condition to verify in order to apply the theorems of Section 3 is covered by the 

following lemma. 

LEMMA 7. Let A ( C ) > 0  and ZoE n 7~ [ (G \C)+  n3']. Then l imc. /n <= 
2 , ( c )  -1. 

PRooF. The proof rests on the continued fraction expansion of the irrational 

number 3'. First define the numbers D .  for n _-> 1 by 

D , =  sup I c a r d { i : l < - i < = n , a < - z o + i 3 ' < / 3 } / n - ( / 3 - a ) [ .  
0 ~ < / 3 a l l  
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It is shown in Kuipers and Niederreiter [3, proof of theorem 3.4, ch. 2] that for 

the sequence ql < q2 < ' ' "  of denominators of the convergents to 3', 

Dq.<=l/q. + 1/q.+l, 

and thus q.Dq. < 2. 

Now fix q. and use the preceding inequality to deduce that 

q. =< q . [ 1 -  A(C)] + lq.Dq. <=q.[1-A(C)]+21, 

where l = max{i: c~ _-< q.}. Thus 

c,/l <= q./l <= 2A (C)-'.  

As q. ~ 0% then l --~ = and so lirnc./n <= 2A (C)-'.  The following theorem is thus 
immediate. 

THEOREM 8. Let C be a Cantor subset of R/Z such that A (C) > O. Then for 
any irrational number y there is a residual set R C_ fl~ such that for any to E R : 

(1) (M(to), tr) is almost automorphic, 

(2) (M(to), o') is not uniquely ergodic, 

(3) (M(to), o') has positive topological entropy, 
(4) &x = C, 

(5) (R/Z, y)  is the maximal equicontinuous factor of (M(to), tr). 

EXAMPLES. Suppose now that (M(to), tr) comes from the preceding theorem. 
It is then possible to take an almost automorphic point x ~ M(to) and "split" it 
into a doubly asymptotic pair y, z such that x ( i ) =  y ( i ) =  z(i) for all i ~ 0 .  
Denote the new flow by (M', tr). It follows that (M', tr) is not uniquely ergodic 

and has the same entropy as (M(to),tr). Now let (M",tr)  be the result of 
doubling the ones in (M', or). Then (M", o') has the following properties: 

(1) (M", tr) is weakly mixing, 

(2) (M", tr) is not uniquely ergodic, 
(3) (M", or) has positive topological entropy, 

(4) (M", tr) is not a prime flow. 

Properties (2) and (3) are straightforward; (1) follows from Petersen and Shapiro 

[6, theorem 2.2]; and (4) follows from the fact that any symbolic flow has 

nontrivial (i.e., not equal to a fixed point) factors of arbitrarily small topological 

entropy. Thus any prime symbolic flow must have zero topological entropy. 
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